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Profiling experiments, where genome-wide measurements are
made of multiple experimental samples, can yield rich fingerprints
for comparison and interpretation.1 Differential labeling of mRNA
or protein samples and their analyses on microarrays and two-
dimensional gels, respectively, are facilitating global views of
biological networks.2 Here, we describe a new type of profiling
experiment where the response of genetically similar but not
identical cells to pairwise combinations of biologically active small
molecules yields a network of chemical genetic interactions. The
ability of combinations of small molecules to interact antagonisti-
cally or synergistically provides a chemical tool to resolve differ-
ences between biological networks; we refer to this as chemical
genomic profiling.

Chemical genomic profiling was performed using a wild-type
(WT), haploid strain (W303 background) of the budding yeast
Saccharomyces cereVisiae along with nine otherwise isogenic
deletion strains, each missing a component of the spindle assembly/
cell polarity network (Table 1).3 As a model phenotype relevant to
the function of these deleted genes, we chose cell cycle progression
because of the ease of measuring a change in the optical density of
cells cultured in liquid media. To obtain a chemical genomic profile,
a two-dimensional matrix of all possible pairwise combinations of
24 small molecules, each with a different structure and known
biological activity, was “mapped” onto the WT and nine deletion
strains for a total of 5760 perturbations (Figure 1).4-6

Besides DMSO as a solvent control, we chose nocodazole
(microtubule destabilizer), latrunculin B (actin destabilizer), and
rapamycin (inhibitor of TOR proteins), which are biologically active
molecules known to reduce yeast growth in a genotype-dependent
manner (Figure 2). The other 20 biologically active small molecules
were identified as positives from a collection of small molecules7,8

at the Harvard ICCB using yeast chemical genetic modifier and
“synthetic-lethal” screens.9,10 We refer to these modulators, many
with unknown targets and mechanisms of action, as SMPs, for small
molecule perturbagens.

After the yeast cultures were incubated for 40 h at room
temperature, each well was analyzed visually, and the optical density
was compared to the effect of adding DMSO alone. For each strain,
the data were encoded into the form of a binary adjacency matrix,
A, with one row and one column for each of the 24 small molecules.
A value of 0 was used to indicate no observable effect on growth,
and a value of 1 was used to indicate no growth or that growth
was reduced, in both replicates.11 Each adjacency matrix was then
used to construct a discrete model in the form of a graphG ) (V,
E) composed ofV nodes, one for each small molecule, andE edges
connecting nodes representing small molecules whose combination
resulted in a value of 1 in the adjacency matrixA (Figure 3).

Of the possible 276 edges, on average there were 98( 12 edges
in each network with a maximum of 119 observed in the bik1∆-

network and a minimum of 85 observed in the kip3∆-network
(Table 1). None of the deletion strain networks were identical to
each other or the WT-network (Figure 3; see Supporting Information
for the complete set of networks). These results reveal that the
structure of the genetic network determines the structure of the
chemical genetic network. To visualize the global similarities/
differences in these latter networks, the Fructherman-Reingold
(F-R) algorithm was applied.12,13 This heuristic graph-drawing
method considers the network as a physical system composed of
mass particles (nodes) repelling each other and springs (edges)
attracting adjacent nodes. Minimizing the “energy” of these systems
resulted in the center of each network containing the most highly

Figure 1. Multidimensional chemical genomic profiling; 276 unique
combinations (in duplicate) and 24 single treatments of “small molecule
perturbagens” (SMPs) were assayed for an effect on the cell cycle network
of S. cereVisiae. Each of the 10 strains profiled had a different genotype
yielding a three-dimensional matrix of 24× 24 × 10 observations.

Figure 2. Structures of 23 small molecules (other than DMSO) used to
profile 10 yeast genotypes in a three-dimensional matrix.10
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connected nodes, which for most, but not all, genotypes included
rapamycin, SMP-7, SMP-15, and SMP-19 (Figure 3).

Graph theoretic descriptors that are analogous to molecular
descriptors used for the quantitative analysis and comparison of
the structures of small molecules14 were computed for each of the
10 chemical genetic networks (Table 1). The networks were further
characterized by deriving the corresponding normalized Laplacian
matrix15 and computing the associated eigenvalues and eigenvectors
(Figure 4 and Table 1).16 For each network, the set ofV eigenvalues
provides a characteristic “spectrum” withV elements ranging in
magnitude from 0 to 2 (Figure 4). Each eigenvector component
reveals the contribution of the corresponding node to that particular
eigenvector.15 A value of, or close to, 1 indicates the localization
of the eigenvector/eigenvalue to a subset of the graph vertices.

Collectively, the numerical values of the descriptors yield a
topological fingerprint of each chemical genetic network. This
fingerprint provides a higher-level representation of the information
inherent in the lower-level relational data obtained from the
phenotypic screen. Standard clustering and dimensionality reduction
algorithms can then be used to reveal global similarities/differences
of the observed chemical genetic networks.17

For example,CIN8andKIP1 are genes encoding kinesin-related
motor proteins that are known to play an essential, but genetically
redundant, role in the organization and function of the mitotic
spindle.3 In agreement with this functional redundancy, hierarchical
clustering17 of the standardized covariance (Pearson correlation)
matrix derived from the topological profiles clustered the cin8∆
and kip1∆ genotypes as nearest neighbors (Figure 5a). Similarly,
principal component analysis17 of standardized (Pearson correlation)
descriptors positioned the cin8 and kip1∆ deletions as nearest
neighbors in a reduced, three-dimensional space maximizing the

Table 1. S. cerevisae Strains and Graph Theoretic Descriptors Computed for the Networks Obtained by Chemical Genomic Profiling

network vertices edges densityd Zagrebe Randice Platte
spectra

max.f
mean
EIPf

low
EIPf

high
EIPf

model Aa 24 0 0 0 0 0 1 1 1 1
model Bb 24 276 1.00 12696 12.00 12144 1.04 0.25 0.04 0.50
WT 24 103 0.37 2784 9.77 2578 1.68 0.20 0.06 0.50
kip1∆ 24 88 0.32 2704 9.02 2516 1.75 0.23 0.07 0.50
kip2∆ 24 87 0.32 2168 9.27 1994 1.73 0.19 0.07 0.50
kip3∆ 24 85 0.31 2106 9.22 1936 1.74 0.19 0.07 0.57
bni1∆ 24 116 0.42 3278 10.13 3046 1.65 0.18 0.06 0.32
bim1∆ 24 111 0.40 3108 9.90 2886 1.00 0.24 0.06 0.52
bik1∆ 24 119 0.43 3372 10.20 3134 1.64 0.19 0.06 0.50
kar9∆ 24 87 0.32 2160 9.32 1986 1.73 0.20 0.07 0.55
dyn1∆ 24 104 0.38 2816 9.75 2608 1.74 0.19 0.07 0.52
cin8∆ 24 97 0.35 2568 9.51 2374 1.71 0.23 0.07 0.51
averagec 24 100 0.36 2721.78 9.62 2520.44 1.63 0.28 0.07 0.50

a Model A is a V ) 24 network with E ) 0. b Model B network is a
V ) 24 network withE ) 276 (complete without self-loops).c Average network calculated from mean of the properties from the 10 yeast genotypes.
d Density calculated as number of observed edges out of a possible 276.e The Zagreb, Randic, and Platt indices are measures of connectivity computed using
Pajek.13 f The Laplacian matrix,15 denoted byL, of a graphG ) (V, E) is a V x V real symmetric matrix with one row and one column for each node.L
is defined byL ) W - A, whereA is a square adjacency matrix andW is a diagonal weight matrix whose entries are row (or column) sums ofA. To
normalizeL, its diagonal values are divided byW such that all diagonal entries have a value of 1, and all off diagonal values are divided by the square root
of the product of the entries ofW.15 The Laplacian spectrum is obtained by solvingLΨ ) ΛΨ, whereΨ represents the matrix of eigenvector components
andΛ represents the corresponding matrix of eigenvalues.16 “Spectra max.” denotes the maximum eigenvalue. The eigenvector inverse participation (EIP)
ratio is the sum of the fourth powers of the eigenvector’s components and is inversely related to the number of eigenvector components significantly
different from zero.15

Figure 3. Network graphsG from wild-type (W303) and two yeast
deletions strains (cin8∆ and kip1) visualized using the graph-drawing
program Pajek.13 Nodes (colored balls) represent small molecules, and edges
(black lines) connect nodes that in combination reduced yeast growth.
“Energy” minimization was performed using the F-R algorithm.12

Figure 4. Characterization of chemical networks using properties of the
normalized Laplacian matrix (see Table 1 and Supporting Information for
details of model graphs and additional graphs).15,16 (a) The eigenvector
inverse participation (EIP) ratios for model network A (green), B (blue),
and wild-type yeast (red). (b) EIP ratios for the 10 genotypes showing
fluctuations in the degree of localization. (c) EIP ratio as a function of the
eigenvalue spectra for model network A (green), B (blue), and WT yeast
(red). (d) Genotype-dependent fluctuations in the eigenvalue spectra.
Deletion of BIM1, which encodes a microtubule-associated protein, resulted
in an eigenvalue spectrum markedly different from those that resulted from
the deletion of other components in the same genetic pathway.
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observed variance (Figure 5b). However, the distance between the
cin8∆/kip1∆-networks and the kip2-, kip3- (KIP2 andKIP3 also
encode kinesin-related motor proteins), and WT-networks reveals
that the consequences of the different kinesin deletions to pairwise
small molecule perturbation are not identical (Figure 5a,b). Further
exploration of the mechanistic basis for these differences is now
warranted.

The information inA for each genotype can also be used to
cluster the small molecules on the basis of the similarities in their
pattern of biological activity. The topologies of the resulting graphs,
and thus relationships of the small molecules, were again different
for each genotype (Figure 6). However, similar to the results
obtained from applying the F-R algorithm (Figure 3), rapamycin,
SMP-7, SMP-15, and SMP-19 were clustered closely together in
most genotypes. These results reveal that systematically varying
the architecture of a genetic network provides a biology-based
method for analyzing the diversity of small molecules. The nature
of this method renders it complementary to the mapping of chemical
space using molecular descriptor analysis.14 Furthermore, these
findings highlight the fact that small genetic differences, here single
gene deletions, can translate into significant differences in the effects
of many small molecules, as observed with multidrug-resistant
tumor cell lines.2c

Topological fingerprints obtained by chemical genomic profiling
provide computational metrics for analyzing biological networks.

Because the outcomes of this method of profiling are dependent
upon the interaction of small molecules in the context of an intact
genetic network (i.e., perturbations), this method differs funda-
mentally from profiling methods based upon DNA sequence or
mRNA/protein expression patterns (i.e., observations). Besides
aiding the characterization of molecular diversity and annotation
of chemical space,8,14 the results herein suggest that chemical
genomic profiling may serve as a tool for the characterization of
perturbations in biological networks or of the networks themselves
(e.g., as a diagnostic tool). These capabilities may lead to new
approaches to discern the molecular etiology of highly complex
phenotypes, including those involved in human disease.
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Figure 5. Multidimensional analysis of chemical genomic profiles. (a)
Clustering of network graphs in Table 1 using the unweighted pair-group
average method and a Euclidean distance metric.17 (b) Three-dimensional
principal component (Ψ1-Ψ3) model (accounting for 94% of the variance)
showing the distances (Euclidean) between networks (red, kinesin and related
motor proteins; blue, other gene deletions).17 The yellow arrow shows the
location of cin8∆ and kip1∆, two motor proteins previously thought to be
functionally redundant.

Figure 6. Clustering of small molecules using the unweighted pair-group
average method and the Tanimoto distance metric for wild-type and two
deletion strains (cin8∆ and kip1∆).17 Small molecules connected by a
common point of branching are more similar with respect to their effects
on proliferation of the particular strain than those not sharing a common
branching point.
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